3.2.30 \(\int \frac {a+b \cosh ^{-1}(c x)}{x (d-c^2 d x^2)^{5/2}} \, dx\) [130]

Optimal. Leaf size=317 \[ \frac {b c x \sqrt {-1+c x} \sqrt {1+c x}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d \left (d-c^2 d x^2\right )^{3/2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \text {ArcTan}\left (e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {7 b \sqrt {-1+c x} \sqrt {1+c x} \tanh ^{-1}(c x)}{6 d^2 \sqrt {d-c^2 d x^2}}-\frac {i b \sqrt {-1+c x} \sqrt {1+c x} \text {PolyLog}\left (2,-i e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {i b \sqrt {-1+c x} \sqrt {1+c x} \text {PolyLog}\left (2,i e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}} \]

[Out]

1/3*(a+b*arccosh(c*x))/d/(-c^2*d*x^2+d)^(3/2)+(a+b*arccosh(c*x))/d^2/(-c^2*d*x^2+d)^(1/2)+1/6*b*c*x*(c*x-1)^(1
/2)*(c*x+1)^(1/2)/d^2/(-c^2*x^2+1)/(-c^2*d*x^2+d)^(1/2)+2*(a+b*arccosh(c*x))*arctan(c*x+(c*x-1)^(1/2)*(c*x+1)^
(1/2))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^2/(-c^2*d*x^2+d)^(1/2)+7/6*b*arctanh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^2
/(-c^2*d*x^2+d)^(1/2)-I*b*polylog(2,-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^2/(-c^
2*d*x^2+d)^(1/2)+I*b*polylog(2,I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^2/(-c^2*d*x^
2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.27, antiderivative size = 317, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {5936, 5946, 4265, 2317, 2438, 35, 213, 41, 205} \begin {gather*} \frac {2 \sqrt {c x-1} \sqrt {c x+1} \text {ArcTan}\left (e^{\cosh ^{-1}(c x)}\right ) \left (a+b \cosh ^{-1}(c x)\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {i b \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {i b \sqrt {c x-1} \sqrt {c x+1} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {b c x \sqrt {c x-1} \sqrt {c x+1}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {7 b \sqrt {c x-1} \sqrt {c x+1} \tanh ^{-1}(c x)}{6 d^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])/(x*(d - c^2*d*x^2)^(5/2)),x]

[Out]

(b*c*x*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(6*d^2*(1 - c^2*x^2)*Sqrt[d - c^2*d*x^2]) + (a + b*ArcCosh[c*x])/(3*d*(d
- c^2*d*x^2)^(3/2)) + (a + b*ArcCosh[c*x])/(d^2*Sqrt[d - c^2*d*x^2]) + (2*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*(a + b*
ArcCosh[c*x])*ArcTan[E^ArcCosh[c*x]])/(d^2*Sqrt[d - c^2*d*x^2]) + (7*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*ArcTanh[c*
x])/(6*d^2*Sqrt[d - c^2*d*x^2]) - (I*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[2, (-I)*E^ArcCosh[c*x]])/(d^2*Sqrt
[d - c^2*d*x^2]) + (I*b*Sqrt[-1 + c*x]*Sqrt[1 + c*x]*PolyLog[2, I*E^ArcCosh[c*x]])/(d^2*Sqrt[d - c^2*d*x^2])

Rule 35

Int[1/(((a_) + (b_.)*(x_))*((c_) + (d_.)*(x_))), x_Symbol] :> Int[1/(a*c + b*d*x^2), x] /; FreeQ[{a, b, c, d},
 x] && EqQ[b*c + a*d, 0]

Rule 41

Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))

Rule 205

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Dist[(n*(p
 + 1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (
IntegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[
p])

Rule 213

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 2317

Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Dist[1/(d*e*n*Log[F]), Subst[Int
[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rule 4265

Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c +
 d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)/E^(I*k*Pi)]/(f*fz*I)), x] + (-Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*
Log[1 - E^((-I)*e + f*fz*x)/E^(I*k*Pi)], x], x] + Dist[d*(m/(f*fz*I)), Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e
 + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]

Rule 5936

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*d*f*(p + 1))), x] + (Dist[(m + 2*p + 3)/(2*d*(
p + 1)), Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Dist[b*c*(n/(2*f*(p + 1)))*Simp[(d +
 e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)], Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCo
sh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] &
&  !GtQ[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])

Rule 5946

Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Dist[(1/c^(m
 + 1))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])], Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c
*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {a+b \cosh ^{-1}(c x)}{x \left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x (-1+c x)^{5/2} (1+c x)^{5/2}} \, dx}{d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {a+b \cosh ^{-1}(c x)}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}-\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x (-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{d^2 \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{\left (-1+c^2 x^2\right )^2} \, dx}{3 d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b c x \sqrt {-1+c x} \sqrt {1+c x}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}+\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{x \sqrt {-1+c x} \sqrt {1+c x}} \, dx}{d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{-1+c^2 x^2} \, dx}{6 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {1}{-1+c^2 x^2} \, dx}{d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b c x \sqrt {-1+c x} \sqrt {1+c x}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}+\frac {7 b \sqrt {-1+c x} \sqrt {1+c x} \tanh ^{-1}(c x)}{6 d^2 \sqrt {d-c^2 d x^2}}+\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int (a+b x) \text {sech}(x) \, dx,x,\cosh ^{-1}(c x)\right )}{d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b c x \sqrt {-1+c x} \sqrt {1+c x}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {7 b \sqrt {-1+c x} \sqrt {1+c x} \tanh ^{-1}(c x)}{6 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (i b \sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int \log \left (1-i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {\left (i b \sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int \log \left (1+i e^x\right ) \, dx,x,\cosh ^{-1}(c x)\right )}{d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b c x \sqrt {-1+c x} \sqrt {1+c x}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {7 b \sqrt {-1+c x} \sqrt {1+c x} \tanh ^{-1}(c x)}{6 d^2 \sqrt {d-c^2 d x^2}}-\frac {\left (i b \sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {\log (1-i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {\left (i b \sqrt {-1+c x} \sqrt {1+c x}\right ) \text {Subst}\left (\int \frac {\log (1+i x)}{x} \, dx,x,e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b c x \sqrt {-1+c x} \sqrt {1+c x}}{6 d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{d^2 \sqrt {d-c^2 d x^2}}+\frac {a+b \cosh ^{-1}(c x)}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}+\frac {2 \sqrt {-1+c x} \sqrt {1+c x} \left (a+b \cosh ^{-1}(c x)\right ) \tan ^{-1}\left (e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {7 b \sqrt {-1+c x} \sqrt {1+c x} \tanh ^{-1}(c x)}{6 d^2 \sqrt {d-c^2 d x^2}}-\frac {i b \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_2\left (-i e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}+\frac {i b \sqrt {-1+c x} \sqrt {1+c x} \text {Li}_2\left (i e^{\cosh ^{-1}(c x)}\right )}{d^2 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 5.12, size = 364, normalized size = 1.15 \begin {gather*} -\frac {a \left (-4+3 c^2 x^2\right ) \sqrt {d-c^2 d x^2}}{3 d^3 \left (-1+c^2 x^2\right )^2}+\frac {a \log (x)}{d^{5/2}}-\frac {a \log \left (d+\sqrt {d} \sqrt {d-c^2 d x^2}\right )}{d^{5/2}}+\frac {b \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \left (14 \cosh ^{-1}(c x) \coth \left (\frac {1}{2} \cosh ^{-1}(c x)\right )-\text {csch}^2\left (\frac {1}{2} \cosh ^{-1}(c x)\right )-\frac {1}{2} \sqrt {\frac {-1+c x}{1+c x}} (1+c x) \cosh ^{-1}(c x) \text {csch}^4\left (\frac {1}{2} \cosh ^{-1}(c x)\right )-24 i \cosh ^{-1}(c x) \log \left (1-i e^{-\cosh ^{-1}(c x)}\right )+24 i \cosh ^{-1}(c x) \log \left (1+i e^{-\cosh ^{-1}(c x)}\right )-28 \log \left (\tanh \left (\frac {1}{2} \cosh ^{-1}(c x)\right )\right )-24 i \text {PolyLog}\left (2,-i e^{-\cosh ^{-1}(c x)}\right )+24 i \text {PolyLog}\left (2,i e^{-\cosh ^{-1}(c x)}\right )-\text {sech}^2\left (\frac {1}{2} \cosh ^{-1}(c x)\right )-\frac {8 \cosh ^{-1}(c x) \sinh ^4\left (\frac {1}{2} \cosh ^{-1}(c x)\right )}{\left (\frac {-1+c x}{1+c x}\right )^{3/2} (1+c x)^3}-14 \cosh ^{-1}(c x) \tanh \left (\frac {1}{2} \cosh ^{-1}(c x)\right )\right )}{24 d^2 \sqrt {d-c^2 d x^2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + b*ArcCosh[c*x])/(x*(d - c^2*d*x^2)^(5/2)),x]

[Out]

-1/3*(a*(-4 + 3*c^2*x^2)*Sqrt[d - c^2*d*x^2])/(d^3*(-1 + c^2*x^2)^2) + (a*Log[x])/d^(5/2) - (a*Log[d + Sqrt[d]
*Sqrt[d - c^2*d*x^2]])/d^(5/2) + (b*Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*(14*ArcCosh[c*x]*Coth[ArcCosh[c*x]/2]
 - Csch[ArcCosh[c*x]/2]^2 - (Sqrt[(-1 + c*x)/(1 + c*x)]*(1 + c*x)*ArcCosh[c*x]*Csch[ArcCosh[c*x]/2]^4)/2 - (24
*I)*ArcCosh[c*x]*Log[1 - I/E^ArcCosh[c*x]] + (24*I)*ArcCosh[c*x]*Log[1 + I/E^ArcCosh[c*x]] - 28*Log[Tanh[ArcCo
sh[c*x]/2]] - (24*I)*PolyLog[2, (-I)/E^ArcCosh[c*x]] + (24*I)*PolyLog[2, I/E^ArcCosh[c*x]] - Sech[ArcCosh[c*x]
/2]^2 - (8*ArcCosh[c*x]*Sinh[ArcCosh[c*x]/2]^4)/(((-1 + c*x)/(1 + c*x))^(3/2)*(1 + c*x)^3) - 14*ArcCosh[c*x]*T
anh[ArcCosh[c*x]/2]))/(24*d^2*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

Maple [A]
time = 2.77, size = 619, normalized size = 1.95

method result size
default \(\frac {a}{3 d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {a}{d^{2} \sqrt {-c^{2} d \,x^{2}+d}}-\frac {a \ln \left (\frac {2 d +2 \sqrt {d}\, \sqrt {-c^{2} d \,x^{2}+d}}{x}\right )}{d^{\frac {5}{2}}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x^{2} c^{2}}{d^{3} \left (c^{2} x^{2}-1\right )^{2}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x +1}\, \sqrt {c x -1}\, x c}{6 d^{3} \left (c^{2} x^{2}-1\right )^{2}}+\frac {4 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right )}{3 d^{3} \left (c^{2} x^{2}-1\right )^{2}}+\frac {7 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}-1\right )}{6 d^{3} \left (c^{2} x^{2}-1\right )}-\frac {7 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (1+c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )}{6 d^{3} \left (c^{2} x^{2}-1\right )}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{d^{3} \left (c^{2} x^{2}-1\right )}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \dilog \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{d^{3} \left (c^{2} x^{2}-1\right )}+\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right ) \ln \left (1+i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{d^{3} \left (c^{2} x^{2}-1\right )}-\frac {i b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \dilog \left (1-i \left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )\right )}{d^{3} \left (c^{2} x^{2}-1\right )}\) \(619\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))/x/(-c^2*d*x^2+d)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/3*a/d/(-c^2*d*x^2+d)^(3/2)+a/d^2/(-c^2*d*x^2+d)^(1/2)-a/d^(5/2)*ln((2*d+2*d^(1/2)*(-c^2*d*x^2+d)^(1/2))/x)-b
*(-d*(c^2*x^2-1))^(1/2)/d^3/(c^2*x^2-1)^2*arccosh(c*x)*x^2*c^2+1/6*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(c^2*x^2-1)^2*
(c*x+1)^(1/2)*(c*x-1)^(1/2)*x*c+4/3*b*(-d*(c^2*x^2-1))^(1/2)/d^3/(c^2*x^2-1)^2*arccosh(c*x)+7/6*b*(-d*(c^2*x^2
-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/(c^2*x^2-1)*ln(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)-1)-7/6*b*(-d*(c^2*x^
2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/(c^2*x^2-1)*ln(1+c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))-I*b*(-d*(c^2*x^2
-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/(c^2*x^2-1)*arccosh(c*x)*ln(1-I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2)))+
I*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/(c^2*x^2-1)*dilog(1+I*(c*x+(c*x-1)^(1/2)*(c*x+1)^(1
/2)))+I*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/(c^2*x^2-1)*arccosh(c*x)*ln(1+I*(c*x+(c*x-1)^
(1/2)*(c*x+1)^(1/2)))-I*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/(c^2*x^2-1)*dilog(1-I*(c*x+(c
*x-1)^(1/2)*(c*x+1)^(1/2)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

-1/3*a*(3*log(2*sqrt(-c^2*d*x^2 + d)*sqrt(d)/abs(x) + 2*d/abs(x))/d^(5/2) - 3/(sqrt(-c^2*d*x^2 + d)*d^2) - 1/(
(-c^2*d*x^2 + d)^(3/2)*d)) + b*integrate(log(c*x + sqrt(c*x + 1)*sqrt(c*x - 1))/((-c^2*d*x^2 + d)^(5/2)*x), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/(c^6*d^3*x^7 - 3*c^4*d^3*x^5 + 3*c^2*d^3*x^3 - d^3*x), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {a + b \operatorname {acosh}{\left (c x \right )}}{x \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))/x/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral((a + b*acosh(c*x))/(x*(-d*(c*x - 1)*(c*x + 1))**(5/2)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/x/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)/((-c^2*d*x^2 + d)^(5/2)*x), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{x\,{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))/(x*(d - c^2*d*x^2)^(5/2)),x)

[Out]

int((a + b*acosh(c*x))/(x*(d - c^2*d*x^2)^(5/2)), x)

________________________________________________________________________________________